

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Indeks

Selamat Datang di Shiza Ecommerce

 <no title>

name: Bug report
about: Create a report to help us improve
title: ''
labels: ''
assignees: ''

Describe the bug
A clear and concise description of what the bug is.

To Reproduce
Steps to reproduce the behavior:

	Go to '...'

	Click on '....'

	Scroll down to '....'

	See error

Expected behavior
A clear and concise description of what you expected to happen.

Screenshots
If applicable, add screenshots to help explain your problem.

Desktop (please complete the following information):

	OS: [e.g. iOS]

	Browser [e.g. chrome, safari]

	Version [e.g. 22]

Smartphone (please complete the following information):

	Device: [e.g. iPhone6]

	OS: [e.g. iOS8.1]

	Browser [e.g. stock browser, safari]

	Version [e.g. 22]

Additional context
Add any other context about the problem here.

 <no title>

name: Feature request
about: Suggest an idea for this project
title: ''
labels: ''
assignees: ''

Is your feature request related to a problem? Please describe.
A clear and concise description of what the problem is. Ex. I'm always frustrated when [...]

Describe the solution you'd like
A clear and concise description of what you want to happen.

Describe alternatives you've considered
A clear and concise description of any alternative solutions or features you've considered.

Additional context
Add any other context or screenshots about the feature request here.

 Polyfill for CSS position: sticky

Polyfill for CSS position: sticky

The most accurate sticky polyfill out in the wild.

Check out the demo [http://wd.dizaina.net/en/scripts/stickyfill/] and use cases test page [http://wilddeer.github.io/stickyfill/test/].

What it does

	supports top-positioned stickies,

	works in IE9+,

	disables itself in older IEs and in browsers with native position: sticky support,

	mimics original position: sticky behavior:

	uses parent node as a boundary box,

	behaves nicely with horizontal page scrolling,

	only works on elements with specified top,

	mimics native top and margin-bottom behavior,

	~~works with table cells~~ removed for consistency until Firefox makes a native implementation [https://bugzilla.mozilla.org/show_bug.cgi?id=975644]

What it doesn't

	doesn't support left, right, bottom or combined stickies,

	doesn't work in overflowed blocks,

	doesn't parse your CSS! Launch it manually.

Installation

NPM

npm install stickyfilljs --save

Yarn

yarn add stickyfilljs

Raw ES6 module

stickyfill.es6.js [https://raw.github.com/wilddeer/stickyfill/master/dist/stickyfill.es6.js]

Old fashioned

Download minified production ES5 script:

stickyfill.min.js [https://raw.github.com/wilddeer/stickyfill/master/dist/stickyfill.min.js]

Include it on your page:

<script src="path/to/stickyfill.min.js"></script>

Usage

First things first, make sure your stickies work in the browsers that support them natively [http://caniuse.com/#feat=css-sticky], e.g.:

<div class="sticky">
 ...
</div>

.sticky {
 position: -webkit-sticky;
 position: sticky;
 top: 0;
}

Then apply the polyfill:

JS:

var elements = document.querySelectorAll('.sticky');
Stickyfill.add(elements);

or JS + jQuery:

var elements = $('.sticky');
Stickyfill.add(elements);

Also worth having a clearfix:

.sticky:before,
.sticky:after {
 content: '';
 display: table;
}

Pro tips

	top specifies sticky’s position relatively to the top edge of the viewport. It accepts negative values, too.

	You can push sticky’s bottom limit up or down by specifying positive or negative margin-bottom.

	Any non-default value (not visible) for overflow, overflow-x, or overflow-y on any of the ancestor elements anchors the sticky to the overflow context of that ancestor. Simply put, scrolling the ancestor will cause the sticky to stick, scrolling the window will not. This is expected with overflow: auto and overflow: scroll, but often causes confusion with overflow: hidden. Keep this in mind, folks!

Check out the test page [http://wilddeer.github.io/stickyfill/test/] to understand stickies better.

API

Stickyfill

Stickyfill.addOne(element)

element – HTMLElement or iterable element list (NodeList [https://developer.mozilla.org/en/docs/Web/API/NodeList], jQuery collection, etc.). First element of the list is used.

Adds the element as a sticky. Returns new Sticky instance associated with the element.

If there’s a sticky associated with the element, returns existing Sticky instance instead.

Stickyfill.add(elementList)

elementList – iterable element list (NodeList [https://developer.mozilla.org/en/docs/Web/API/NodeList], jQuery collection, etc.) or single HTMLElement.

Adds the elements as stickies. Skips the elements that have stickies associated with them.

Returns an array of Sticky instances associated with the elements (both existing and new ones).

Stickyfill.refreshAll()

Refreshes all existing stickies, updates their parameters and positions.

All stickies are automatically refreshed after window resizes and device orientations changes.

There’s also a fast but not very accurate layout change detection that triggers this method. Call this method manually in case automatic detection fails.

Stickyfill.removeOne(element)

element – HTMLElement or iterable element list (NodeList [https://developer.mozilla.org/en/docs/Web/API/NodeList], jQuery collection, etc.). First element of the list is used.

Removes sticky associated with the element.

Stickyfill.remove(elementList)

elementList – iterable element list (NodeList [https://developer.mozilla.org/en/docs/Web/API/NodeList], jQuery collection, etc.) or single HTMLElement.

Removes stickies associated with the elements in the list.

Stickyfill.removeAll()

Removes all existing stickies.

Stickyfill.stickies

Array of existing Sticky instances.

Stickyfill.Sticky

Sticky class. You can use it directly if you want:

const sticky = new Stickyfill.Sticky(element);

Throws an error if there’s a sticky already bound to the element.

Sticky.refresh()

Refreshes the sticky, updates its parameters and position.

Sticky.remove()

Removes the sticky. Restores the element to its original state.

Feature requests

TL;DR

These features will never be implemented in Stickyfill:

	Callbacks for sticky state changes

	Switching classes between different sticky states

	Other features that add non-standard functionality

If your request isn’t about one of these, you are welcome to create an issue [https://github.com/wilddeer/stickyfill/issues/new]. Please check existing issues [https://github.com/wilddeer/stickyfill/issues] before creating new one.

Some reasoning

Stickyfill is a polyfill [https://en.wikipedia.org/wiki/Polyfill]. This means that it implements a feature (sticky positioning in this case) that already exists in some browsers natively, and allows to use this feature in the browsers that don’t support it yet and older versions of the browsers that didn’t support it at the time. This is its only purpose.

This also means that Stickyfill does nothing in the browsers that do support sticky positioning. Which, in turn, means that those browsers won’t support any additional non-standard features.

Bug reports

Check existing issues [https://github.com/wilddeer/stickyfill/issues] before creating new one. Please provide a live reproduction of a bug.

Contributing

Prerequisites

	Install Git 😱

	Install node [https://nodejs.org/en/]

	Install grunt-cli [http://gruntjs.com/getting-started#installing-the-cli]

	Clone the repo, cd into the repo folder, run npm install (or yarn if you are fancy).

Ok, you are all set.

Building and testing

cd into the repo folder and run grunt. It will build the project from /src/strickyfill.js into /dist and run the watcher that will rebuild the project every time you change something in the source file.

Make changes to the source file. Stick to ES6 syntax.

Open /test/index.html in a browser that doesn’t support [http://caniuse.com/#feat=css-sticky] position: sticky to check that everything works as expected. Compare the results to the same page in a browser that supports position: sticky.

Commit the changes. DO NOT commit the files in the /dist folder. DO NOT change the version in package.json.

Make a pull request 👍

Adding / removing / updating npm packages

Use Yarn [https://yarnpkg.com/], dont’t forget to commit yarn.lock.

Using Stickyfill?

🍻 Buy me a beer [https://www.paypal.me/wilddeer/0usd]

License

MIT license.

 <no title>

 The MIT License (MIT)

Copyright (c) 2015 Jack Moore

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

 Changelog

Changelog

v.4.0.2 - 2018-04-30

	More specific detection of when to change overflow. Merges #361.

v.4.0.1 - 2018-03-23

	Minor refactor & updated build dependencies

v.4.0.0 - 2017-07-12

	Changed how Autosize determines the initial height. Fixes #336.

v.3.0.21 - 2017-05-19

	Fixed bug with overflow detection which degraded performance of textareas that exceed their max-width. Fixes #333.

v.3.0.20 - 2016-12-04

	Fixed minor bug where the resized event would not fire under specific conditions when changing the overflow.

v.3.0.19 - 2016-11-23

	Bubble dispatched events. Merged #319.

v.3.0.18 - 2016-10-26

	Fixed Firefox issue where calling dispatchEvent on a detached element throws an error. Fixes #317.

v.3.0.17 - 2016-7-25

	Fixed Chromium issue where getComputedStyle pixel value did not exactly match the style pixel value. Fixes #306.

	Removed undocumented argument, minor refactoring, more comments.

v.3.0.16 - 2016-7-13

	Fixed issue with overflowing parent elements. Fixes #298.

v.3.0.15 - 2016-1-26

	Used newer Event constructor, when available. Fixes #280.

v.3.0.14 - 2015-11-11

	Fixed memory leak on destroy. Merged #271, fixes #270.

	Fixed bug in old versions of Firefox (1-5), fixes #246.

v.3.0.13 - 2015-09-26

	Fixed scroll-bar jumpiness in iOS. Merged #261, fixes #207.

	Fixed reflowing of initial text in Chrome and Safari.

v.3.0.12 - 2015-09-14

	Merged changes were discarded when building new dist files. Merged #255, Fixes #257 for real this time.

v.3.0.11 - 2015-09-14

	Fixed regression from 3.0.10 that caused an error with ES5 browsers. Merged #255, Fixes #257.

v.3.0.10 - 2015-09-10

	Removed data attribute as a way of tracking which elements autosize has been assigned to. fixes #254, fixes #200.

v.3.0.9 - 2015-09-02

	Fixed issue with assigning autosize to detached nodes. Merged #253, Fixes #234.

v.3.0.8 - 2015-06-29

	Fixed the autosize:resized event not being triggered when the overflow changes. Fixes #244.

v.3.0.7 - 2015-06-29

	Fixed jumpy behavior in Windows 8.1 mobile. Fixes #239.

v.3.0.6 - 2015-05-19

	Renamed 'dest' folder to 'dist' to follow common conventions.

v.3.0.5 - 2015-05-18

	Do nothing in Node.js environment.

v.3.0.4 - 2015-05-05

	Added options object for indicating if the script should set the overflowX and overflowY. The default behavior lets the script control the overflows, which will normalize the appearance between browsers. Fixes #220.

v.3.0.3 - 2015-04-23

	Avoided adjusting the height for hidden textarea elements. Fixes #155.

v.3.0.2 - 2015-04-23

	Reworked to respect max-height of any unit-type. Fixes #191.

v.3.0.1 - 2015-04-23

	Fixed the destroy event so that it removes its own event handler. Fixes #218.

v.3.0.0 - 2015-04-15

	Added new methods for updating and destroying:

	autosize.update(elements)

	autosize.destroy(elements)

	Renamed custom events as to not use jQuery's custom events namespace:

	autosize.resized renamed to autosize:resized

	autosize.update renamed to autosize:update

	autosize.destroy renamed to autosize:destroy

v.2.0.1 - 2015-04-15

	Version bump for NPM publishing purposes

v.2.0.0 - 2015-02-25

	Smaller, simplier code-base

	New API. Example usage: autosize(document.querySelectorAll(textarea));

	Dropped jQuery dependency

	Dropped IE7-IE8 support

	Dropped optional parameters

	Closes #98, closes #106, closes #123, fixes #129, fixes #132, fixes #139, closes #140, closes #166, closes #168, closes #192, closes #193, closes #197

 Summary

Summary

Autosize is a small, stand-alone script to automatically adjust textarea height to fit text.

Demo

Full documentation and a demo can be found at jacklmoore.com/autosize [http://jacklmoore.com/autosize]

Install via NPM

npm install autosize

Browser compatibility

Chrome	Firefox	IE	Safari	iOS Safari	Android	Opera Mini	Windows Phone IE
yes | yes | 9 | yes | yes | 4 | ? | 8.1

Usage

The autosize function accepts a single textarea element, or an array or array-like object (such as a NodeList or jQuery collection) of textarea elements.

// from a NodeList
autosize(document.querySelectorAll('textarea'));

// from a single Node
autosize(document.querySelector('textarea'));

// from a jQuery collection
autosize($('textarea'));

Released under the MIT License [http://www.opensource.org/licenses/mit-license.php]

 Contributor Covenant Code of Conduct

Contributor Covenant Code of Conduct

Our Pledge

In the interest of fostering an open and welcoming environment, we as contributors and maintainers pledge to making participation in our project and our community a harassment-free experience for everyone, regardless of age, body size, disability, ethnicity, gender identity and expression, level of experience, nationality, personal appearance, race, religion, or sexual identity and orientation.

Our Standards

Examples of behavior that contributes to creating a positive environment include:

	Using welcoming and inclusive language

	Being respectful of differing viewpoints and experiences

	Gracefully accepting constructive criticism

	Focusing on what is best for the community

	Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

	The use of sexualized language or imagery and unwelcome sexual attention or advances

	Trolling, insulting/derogatory comments, and personal or political attacks

	Public or private harassment

	Publishing others' private information, such as a physical or electronic address, without explicit permission

	Other conduct which could reasonably be considered inappropriate in a professional setting

Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable behavior and are expected to take appropriate and fair corrective action in response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits, issues, and other contributions that are not aligned to this Code of Conduct, or to ban temporarily or permanently any contributor for other behaviors that they deem inappropriate, threatening, offensive, or harmful.

Scope

This Code of Conduct applies both within project spaces and in public spaces when an individual is representing the project or its community. Examples of representing a project or community include using an official project e-mail address, posting via an official social media account, or acting as an appointed representative at an online or offline event. Representation of a project may be further defined and clarified by project maintainers.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported by contacting the project team at mdo@getbootstrap.com. The project team will review and investigate all complaints, and will respond in a way that it deems appropriate to the circumstances. The project team is obligated to maintain confidentiality with regard to the reporter of an incident. Further details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good faith may face temporary or permanent repercussions as determined by other members of the project's leadership.

Attribution

This Code of Conduct is adapted from the Contributor Covenant [https://www.contributor-covenant.org/], version 1.4, available at https://www.contributor-covenant.org/version/1/4/code-of-conduct.html

 Table of contents

 [image: Bootstrap logo]

 How does Bootstrap's test suite work?

How does Bootstrap's test suite work?

Bootstrap uses QUnit [https://qunitjs.com/] and Sinon [https://sinonjs.org/]. Each plugin has a file dedicated to its tests in unit/<plugin-name>.js.

	unit/ contains the unit test files for each Bootstrap plugin.

	vendor/ contains third-party testing-related code (QUnit, jQuery and Sinon).

	visual/ contains "visual" tests which are run interactively in real browsers and require manual verification by humans.

To run the unit test suite via Karma [https://karma-runner.github.io/], run npm run js-test.

To run the unit test suite via a real web browser, open index.html in the browser.

How do I add a new unit test?

	Locate and open the file dedicated to the plugin which you need to add tests to (unit/<plugin-name>.js).

	Review the QUnit API Documentation [https://api.qunitjs.com/] and use the existing tests as references for how to structure your new tests.

	Write the necessary unit test(s) for the new or revised functionality.

	Run npm run js-test to see the results of your newly-added test(s).

Note: Your new unit tests should fail before your changes are applied to the plugin, and should pass after your changes are applied to the plugin.

What should a unit test look like?

	Each test should have a unique name clearly stating what unit is being tested.

	Each test should test only one unit per test, although one test can include several assertions. Create multiple tests for multiple units of functionality.

	Each test should begin with assert.expect [https://api.qunitjs.com/assert/expect/] to ensure that the expected assertions are run.

	Each test should follow the project's JavaScript Code Guidelines [https://github.com/twbs/bootstrap/blob/master/CONTRIBUTING.md#js]

Code coverage

Currently we're aiming for at least 80% test coverage for our code. To ensure your changes meet or exceed this limit, run npm run js-compile && npm run js-test and open the file in js/coverage/lcov-report/index.html to see the code coverage for each plugin. See more details when you select a plugin and ensure your change is fully covered by unit tests.

Example tests

// Synchronous test
QUnit.test('should describe the unit being tested', function (assert) {
 assert.expect(1)
 var templateHTML = '<div class="alert alert-danger fade show">' +
 '×' +
 '<p>Template necessary for the test.</p>' +
 '</div>'
 var $alert = $(templateHTML).appendTo('#qunit-fixture').bootstrapAlert()

 $alert.find('.close').trigger('click')

 // Make assertion
 assert.strictEqual($alert.hasClass('show'), false, 'remove .show class on .close click')
})

// Asynchronous test
QUnit.test('should describe the unit being tested', function (assert) {
 assert.expect(2)
 var done = assert.async()

 var $tooltip = $('<div title="tooltip title"></div>').bootstrapTooltip()
 var tooltipInstance = $tooltip.data('bs.tooltip')
 var spyShow = sinon.spy(tooltipInstance, 'show')

 $tooltip.appendTo('#qunit-fixture')
 .on('shown.bs.tooltip', function () {
 assert.ok(true, '"shown" event was fired after calling "show"')
 assert.ok(spyShow.called, 'show called')
 done()
 })
 .bootstrapTooltip('show')
})

 Asynchronous methods and transitions

 {% capture callout %}

Asynchronous methods and transitions

All API methods are asynchronous and start a transition. They return to the caller as soon as the transition is started but before it ends. In addition, a method call on a transitioning component will be ignored.

[See our JavaScript documentation for more information]({{ site.baseurl }}/docs/{{ site.docs_version }}/getting-started/javascript/).
{% endcapture %}
{% include callout.html content=callout type="danger" %}

 <no title>

 {% capture callout %}
Note that since browsers do not currently support range context queries [https://www.w3.org/TR/mediaqueries-4/#range-context], we work around the limitations of min- and max- prefixes [https://www.w3.org/TR/mediaqueries-4/#mq-min-max] and viewports with fractional widths (which can occur under certain conditions on high-dpi devices, for instance) by using values with higher precision for these comparisons.
{% endcapture %}
{% include callout.html content=callout type="info" %}

 <no title>

 {% capture callout %}
The animation effect of this component is dependent on the prefers-reduced-motion media query. See the [reduced motion section of our accessibility documentation]({{ site.baseurl }}/docs/{{ site.docs_version }}/getting-started/accessibility/#reduced-motion).
{% endcapture %}
{% include callout.html content=callout type="info" %}

 Conveying meaning to assistive technologies

 {% capture callout %}

Conveying meaning to assistive technologies

Using color to add meaning only provides a visual indication, which will not be conveyed to users of assistive technologies – such as screen readers. Ensure that information denoted by the color is either obvious from the content itself (e.g. the visible text), or is included through alternative means, such as additional text hidden with the .sr-only class.
{% endcapture %}
{% include callout.html content=callout type="warning" %}

 layout: docs title: Wall of browser bugs group: browser-bugs redirect_from: "/browser-bugs/"

layout: docs
title: Wall of browser bugs
group: browser-bugs
redirect_from: "/browser-bugs/"

Bootstrap currently works around several outstanding browser bugs in major browsers to deliver the best cross-browser experience possible. Some bugs, like those listed below, cannot be solved by us.

We publicly list browser bugs that are impacting us here, in the hopes of expediting the process of fixing them. For information on Bootstrap's browser compatibility, [see our browser compatibility docs]({{ site.baseurl }}/docs/{{ site.docs_version }}/getting-started/browsers-devices/#supported-browsers).

See also:

	Chromium issue 536263: [meta] Issues affecting Bootstrap [https://bugs.chromium.org/p/chromium/issues/detail?id=536263]

	Mozilla bug 1230801: Fix the issues that affect Bootstrap [https://bugzilla.mozilla.org/show_bug.cgi?id=1230801]

	WebKit bug 159753: [meta] Issues affecting Bootstrap [https://bugs.webkit.org/show_bug.cgi?id=159753]

	jQuery's browser bug workarounds [https://docs.google.com/document/d/1LPaPA30bLUB_publLIMF0RlhdnPx_ePXm7oW02iiT6o]

 	Browser(s)
 	Summary of bug
 	Upstream bug(s)
 	Bootstrap issue(s)

 {% for bug in site.data.browser-bugs %}

 	{{ bug.browser }}
 	{{ bug.summary | markdownify }}
 	{% include bugify.html content=bug.upstream_bug %}
 	{% include bugify.html content=bug.origin %}

 {% endfor %}

Most wanted features

There are several features specified in Web standards which would allow us to make Bootstrap more robust, elegant, or performant, but aren't yet implemented in certain browsers, thus preventing us from taking advantage of them.

We publicly list these "most wanted" feature requests here, in the hopes of expediting the process of getting them implemented.

 	Browser(s)
 	Summary of feature
 	Upstream issue(s)
 	Bootstrap issue(s)

 {% for feat in site.data.browser-features %}

 	{{ feat.browser }}
 	{{ feat.summary | markdownify }}
 	{% include bugify.html content=feat.upstream_bug %}
 	{% include bugify.html content=feat.origin %}

 {% endfor %}

 layout: docs title: Migrating to v4 description: Bootstrap 4 is a major rewrite of the entire project. The most notable changes are summarized below, followed by more specific changes to relevant components. group: migration redirect_from: "/migration/" toc: true

layout: docs
title: Migrating to v4
description: Bootstrap 4 is a major rewrite of the entire project. The most notable changes are summarized below, followed by more specific changes to relevant components.
group: migration
redirect_from: "/migration/"
toc: true

Stable changes

Moving from Beta 3 to our stable v4.x release, there are no breaking changes, but there are some notable changes.

Printing

	Fixed broken print utilities. Previously, using a .d-print-* class would unexpectedly overrule any other .d-* class. Now, they match our other display utilities and only apply to that media (@media print).

	Expanded available print display utilities to match other utilities. Beta 3 and older only had block, inline-block, inline, and none. Stable v4 added flex, inline-flex, table, table-row, and table-cell.

	Fixed print preview rendering across browsers with new print styles that specify @page size.

Beta 3 changes

While Beta 2 saw the bulk of our breaking changes during the beta phase, but we still have a few that needed to be addressed in the Beta 3 release. These changes apply if you're updating to Beta 3 from Beta 2 or any older version of Bootstrap.

Miscellaneous

	Removed the unused $thumbnail-transition variable. We weren't transitioning anything, so it was just extra code.

	The npm package no longer includes any files other than our source and dist files; if you relied on them and were running our scripts via the node_modules folder, you should adapt your workflow.

Forms

	Rewrote both custom and default checkboxes and radios. Now, both have matching HTML structure (outer <div> with sibling <input> and <label>) and the same layout styles (stacked default, inline with modifier class). This allows us to style the label based on the input's state, simplifying support for the disabled attribute (previously requiring a parent class) and better supporting our form validation.

As part of this, we've changed the CSS for managing multiple background-images on custom form checkboxes and radios. Previously, the now removed .custom-control-indicator element had the background color, gradient, and SVG icon. Customizing the background gradient meant replacing all of those every time you needed to change just one. Now, we have .custom-control-label::before for the fill and gradient and .custom-control-label::after handles the icon.

To make a custom check inline, add .custom-control-inline.

	Updated selector for input-based button groups. Instead of [data-toggle="buttons"] { } for style and behavior, we use the data attribute just for JS behaviors and rely on a new .btn-group-toggle class for styling.

	Removed .col-form-legend in favor of a slightly improved .col-form-label. This way .col-form-label-sm and .col-form-label-lg can be used on <legend> elements with ease.

	Custom file inputs received a change to their $custom-file-text Sass variable. It's no longer a nested Sass map and now only powers one string—the Browse button as that is now the only pseudo-element generated from our Sass. The Choose file text now comes from the .custom-file-label.

Input groups

	Input group addons are now specific to their placement relative to an input. We've dropped .input-group-addon and .input-group-btn for two new classes, .input-group-prepend and .input-group-append. You must explicitly use an append or a prepend now, simplifying much of our CSS. Within an append or prepend, place your buttons as they would exist anywhere else, but wrap text in .input-group-text.

	Validation styles are now supported, as are multiple inputs (though you can only validate one input per group).

	Sizing classes must be on the parent .input-group and not the individual form elements.

Beta 2 changes

While in beta, we aim to have no breaking changes. However, things don't always go as planned. Below are the breaking changes to bear in mind when moving from Beta 1 to Beta 2.

Breaking

	Removed $badge-color variable and its usage on .badge. We use a color contrast function to pick a color based on the background-color, so the variable is unnecessary.

	Renamed grayscale() function to gray() to avoid breaking conflict with the CSS native grayscale filter.

	Renamed .table-inverse, .thead-inverse, and .thead-default to .*-dark and .*-light, matching our color schemes used elsewhere.

	Responsive tables now generate classes for each grid breakpoint. This breaks from Beta 1 in that the .table-responsive you've been using is more like .table-responsive-md. You may now use .table-responsive or .table-responsive-{sm,md,lg,xl} as needed.

	Dropped Bower support as the package manager has been deprecated for alternatives (e.g., Yarn or npm). See bower/bower#2298 [https://github.com/bower/bower/issues/2298] for details.

	Bootstrap still requires jQuery 1.9.1 or higher, but you're advised to use version 3.x since v3.x's supported browsers are the ones Bootstrap supports plus v3.x has some security fixes.

	Removed the unused .form-control-label class. If you did make use of this class, it was duplicate of the .col-form-label class that vertically centered a <label> with it's associated input in horizontal form layouts.

	Changed the color-yiq from a mixin that included the color property to a function that returns a value, allowing you to use it for any CSS property. For example, instead of color-yiq(#000), you'd write color: color-yiq(#000);.

Highlights

	Introduced new pointer-events usage on modals. The outer .modal-dialog passes through events with pointer-events: none for custom click handling (making it possible to just listen on the .modal-backdrop for any clicks), and then counteracts it for the actual .modal-content with pointer-events: auto.

Summary

Here are the big ticket items you'll want to be aware of when moving from v3 to v4.

Browser support

	Dropped IE8, IE9, and iOS 6 support. v4 is now only IE10+ and iOS 7+. For sites needing either of those, use v3.

	Added official support for Android v5.0 Lollipop's Browser and WebView. Earlier versions of the Android Browser and WebView remain only unofficially supported.

Global changes

	Flexbox is enabled by default. In general this means a move away from floats and more across our components.

	Switched from Less [http://lesscss.org/] to Sass [https://sass-lang.com/] for our source CSS files.

	Switched from px to rem as our primary CSS unit, though pixels are still used for media queries and grid behavior as device viewports are not affected by type size.

	Global font-size increased from 14px to 16px.

	Revamped grid tiers to add a fifth option (addressing smaller devices at 576px and below) and removed the -xs infix from those classes. Example: .col-6.col-sm-4.col-md-3.

	Replaced the separate optional theme with configurable options via SCSS variables (e.g., $enable-gradients: true).

	Build system overhauled to use a series of npm scripts instead of Grunt. See package.json for all scripts, or our project readme for local development needs.

	Non-responsive usage of Bootstrap is no longer supported.

	Dropped the online Customizer in favor of more extensive setup documentation and customized builds.

	Added dozens of new [utility classes]({{ site.baseurl }}/docs/{{ site.docs_version }}/utilities/) for common CSS property-value pairs and margin/padding spacing shortcuts.

Grid system

	Moved to flexbox.

	Added support for flexbox in the grid mixins and predefined classes.

	As part of flexbox, included support for vertical and horizontal alignment classes.

	Updated grid class names and a new grid tier.

	Added a new sm grid tier below 768px for more granular control. We now have xs, sm, md, lg, and xl. This also means every tier has been bumped up one level (so .col-md-6 in v3 is now .col-lg-6 in v4).

	xs grid classes have been modified to not require the infix to more accurately represent that they start applying styles at min-width: 0 and not a set pixel value. Instead of .col-xs-6, it's now .col-6. All other grid tiers require the infix (e.g., sm).

	Updated grid sizes, mixins, and variables.

	Grid gutters now have a Sass map so you can specify specific gutter widths at each breakpoint.

	Updated grid mixins to utilize a make-col-ready prep mixin and a make-col to set the flex and max-width for individual column sizing.

	Changed grid system media query breakpoints and container widths to account for new grid tier and ensure columns are evenly divisible by 12 at their max width.

	Grid breakpoints and container widths are now handled via Sass maps ($grid-breakpoints and $container-max-widths) instead of a handful of separate variables. These replace the @screen-* variables entirely and allow you to fully customize the grid tiers.

	Media queries have also changed. Instead of repeating our media query declarations with the same value each time, we now have @include media-breakpoint-up/down/only. Now, instead of writing @media (min-width: @screen-sm-min) { ... }, you can write @include media-breakpoint-up(sm) { ... }.

Components

	Dropped panels, thumbnails, and wells for a new all-encompassing component, [cards]({{ site.baseurl }}/docs/{{ site.docs_version }}/components/card/).

	Dropped the Glyphicons icon font. If you need icons, some options are:

	the upstream version of Glyphicons [https://www.glyphicons.com/]

	Octicons [https://octicons.github.com/]

	Font Awesome [https://fontawesome.com/]

	See the [Extend page]({{ site.baseurl }}/docs/{{ site.docs_version }}/extend/icons/) for a list of alternatives. Have additional suggestions? Please open an issue or PR.

	Dropped the Affix jQuery plugin.

	We recommend using position: sticky instead. See the HTML5 Please entry [https://html5please.com/#sticky] for details and specific polyfill recommendations. One suggestion is to use an @supports rule for implementing it (e.g., @supports (position: sticky) { ... })

	If you were using Affix to apply additional, non-position styles, the polyfills might not support your use case. One option for such uses is the third-party ScrollPos-Styler [https://github.com/acch/scrollpos-styler] library.

	Dropped the pager component as it was essentially slightly customized buttons.

	Refactored nearly all components to use more un-nested class selectors instead of over-specific children selectors.

By component

This list highlights key changes by component between v3.x.x and v4.0.0.

Reboot

New to Bootstrap 4 is the [Reboot]({{ site.baseurl }}/docs/{{ site.docs_version }}/content/reboot/), a new stylesheet that builds on Normalize with our own somewhat opinionated reset styles. Selectors appearing in this file only use elements—there are no classes here. This isolates our reset styles from our component styles for a more modular approach. Some of the most important resets this includes are the box-sizing: border-box change, moving from em to rem units on many elements, link styles, and many form element resets.

Typography

	Moved all .text- utilities to the _utilities.scss file.

	Dropped .page-header as its styles can be applied via utilities.

	.dl-horizontal has been dropped. Instead, use .row on <dl> and use grid column classes (or mixins) on its <dt> and <dd> children.

	Redesigned blockquotes, moving their styles from the <blockquote> element to a single class, .blockquote. Dropped the .blockquote-reverse modifier for text utilities.

	.list-inline now requires that its children list items have the new .list-inline-item class applied to them.

Images

	Renamed .img-responsive to .img-fluid.

	Renamed .img-rounded to .rounded

	Renamed .img-circle to .rounded-circle

Tables

	Nearly all instances of the > selector have been removed, meaning nested tables will now automatically inherit styles from their parents. This greatly simplifies our selectors and potential customizations.

	Renamed .table-condensed to .table-sm for consistency.

	Added a new .table-inverse option.

	Added table header modifiers: .thead-default and .thead-inverse.

	Renamed contextual classes to have a .table--prefix. Hence .active, .success, .warning, .danger and .info to .table-active, .table-success, .table-warning, .table-danger and .table-info.

Forms

	Moved element resets to the _reboot.scss file.

	Renamed .control-label to .col-form-label.

	Renamed .input-lg and .input-sm to .form-control-lg and .form-control-sm, respectively.

	Dropped .form-group-* classes for simplicity's sake. Use .form-control-* classes instead now.

	Dropped .help-block and replaced it with .form-text for block-level help text. For inline help text and other flexible options, use utility classes like .text-muted.

	Dropped .radio-inline and .checkbox-inline.

	Consolidated .checkbox and .radio into .form-check and the various .form-check-* classes.

	Horizontal forms overhauled:

	Dropped the .form-horizontal class requirement.

	.form-group no longer applies styles from the .row via mixin, so .row is now required for horizontal grid layouts (e.g., <div class="form-group row">).

	Added new .col-form-label class to vertically center labels with .form-controls.

	Added new .form-row for compact form layouts with the grid classes (swap your .row for a .form-row and go).

	Added custom forms support (for checkboxes, radios, selects, and file inputs).

	Replaced .has-error, .has-warning, and .has-success classes with HTML5 form validation via CSS's :invalid and :valid pseudo-classes.

	Renamed .form-control-static to .form-control-plaintext.

Buttons

	Renamed .btn-default to .btn-secondary.

	Dropped the .btn-xs class entirely as .btn-sm is proportionally much smaller than v3's.

	The [stateful button]({{ site.url }}/docs/3.3/javascript/#buttons-stateful) feature of the button.js jQuery plugin has been dropped. This includes the $().button(string) and $().button('reset') methods. We advise using a tiny bit of custom JavaScript instead, which will have the benefit of behaving exactly the way you want it to.

	Note that the other features of the plugin (button checkboxes, button radios, single-toggle buttons) have been retained in v4.

	Change buttons' [disabled] to :disabled as IE9+ supports :disabled. However fieldset[disabled] is still necessary because native disabled fieldsets are still buggy in IE11 [https://developer.mozilla.org/en-US/docs/Web/HTML/Element/fieldset#Browser_compatibility].

Button group

	Rewrote component with flexbox.

	Removed .btn-group-justified. As a replacement you can use <div class="btn-group d-flex" role="group"></div> as a wrapper around elements with .w-100.

	Dropped the .btn-group-xs class entirely given removal of .btn-xs.

	Removed explicit spacing between button groups in button toolbars; use margin utilities now.

	Improved documentation for use with other components.

Dropdowns

	Switched from parent selectors to singular classes for all components, modifiers, etc.

	Simplified dropdown styles to no longer ship with upward or downward facing arrows attached to the dropdown menu.

	Dropdowns can be built with <div>s or s now.

	Rebuilt dropdown styles and markup to provide easy, built-in support for <a> and <button> based dropdown items.

	Renamed .divider to .dropdown-divider.

	Dropdown items now require .dropdown-item.

	Dropdown toggles no longer require an explicit ; this is now provided automatically via CSS's ::after on .dropdown-toggle.

Grid system

	Added a new 576px grid breakpoint as sm, meaning there are now five total tiers (xs, sm, md, lg, and xl).

	Renamed the responsive grid modifier classes from .col-{breakpoint}-{modifier}-{size} to .{modifier}-{breakpoint}-{size} for simpler grid classes.

	Dropped push and pull modifier classes for the new flexbox-powered order classes. For example, instead of .col-8.push-4 and .col-4.pull-8, you'd use .col-8.order-2 and .col-4.order-1.

	Added flexbox utility classes for grid system and components.

List groups

	Rewrote component with flexbox.

	Replaced a.list-group-item with an explicit class, .list-group-item-action, for styling link and button versions of list group items.

	Added .list-group-flush class for use with cards.

Modal

	Rewrote component with flexbox.

	Given the move to flexbox, alignment of dismiss icons in the header is likely broken as we're no longer using floats. Floated content comes first, but with flexbox that's no longer the case. Update your dismiss icons to come after modal titles to fix.

	The remote option (which could be used to automatically load and inject external content into a modal) and the corresponding loaded.bs.modal event were removed. We recommend instead using client-side templating or a data binding framework, or calling jQuery.load [https://api.jquery.com/load/] yourself.

Navs

	Rewrote component with flexbox.

	Dropped nearly all > selectors for simpler styling via un-nested classes.

	Instead of HTML-specific selectors like .nav > li > a, we use separate classes for .navs, .nav-items, and .nav-links. This makes your HTML more flexible while bringing along increased extensibility.

Navbar

The navbar has been entirely rewritten in flexbox with improved support for alignment, responsiveness, and customization.

	Responsive navbar behaviors are now applied to the .navbar class via the required .navbar-expand-{breakpoint} where you choose where to collapse the navbar. Previously this was a Less variable modification and required recompiling.

	.navbar-default is now .navbar-light, though .navbar-dark remains the same. One of these is required on each navbar. However, these classes no longer set background-colors; instead they essentially only affect color.

	Navbars now require a background declaration of some kind. Choose from our background utilities (.bg-*) or set your own with the light/inverse classes above [for mad customization]({{ site.baseurl }}/docs/{{ site.docs_version }}/components/navbar/#color-schemes).

	Given flexbox styles, navbars can now use flexbox utilities for easy alignment options.

	.navbar-toggle is now .navbar-toggler and has different styles and inner markup (no more three s).

	Dropped the .navbar-form class entirely. It's no longer necessary; instead, just use .form-inline and apply margin utilities as necessary.

	Navbars no longer include margin-bottom or border-radius by default. Use utilities as necessary.

	All examples featuring navbars have been updated to include new markup.

Pagination

	Rewrote component with flexbox.

	Explicit classes (.page-item, .page-link) are now required on the descendants of .paginations

	Dropped the .pager component entirely as it was little more than customized outline buttons.

Breadcrumbs

	An explicit class, .breadcrumb-item, is now required on the descendants of .breadcrumbs

Labels and badges

	Consolidated .label and .badge to disambiguate from the <label> element and simplify related components.

	Added .badge-pill as modifier for rounded "pill" look.

	Badges are no longer floated automatically in list groups and other components. Utility classes are now required for that.

	.badge-default has been dropped and .badge-secondary added to match component modifier classes used elsewhere.

Panels, thumbnails, and wells

Dropped entirely for the new card component.

Panels

	.panel to .card, now built with flexbox.

	.panel-default removed and no replacement.

	.panel-group removed and no replacement. .card-group is not a replacement, it is different.

	.panel-heading to .card-header

	.panel-title to .card-title. Depending on the desired look, you may also want to use [heading elements or classes]({{ site.baseurl }}/docs/{{ site.docs_version }}/content/typography/#headings) (e.g. <h3>, .h3) or bold elements or classes (e.g. , , [.font-weight-bold]({{ site.baseurl }}/docs/{{ site.docs_version }}/utilities/text/#font-weight-and-italics)). Note that .card-title, while similarly named, produces a different look than .panel-title.

	.panel-body to .card-body

	.panel-footer to .card-footer

	.panel-primary, .panel-success, .panel-info, .panel-warning, and .panel-danger have been dropped for .bg-, .text-, and .border utilities generated from our $theme-colors Sass map.

Progress

	Replaced contextual .progress-bar-* classes with .bg-* utilities. For example, class="progress-bar progress-bar-danger" becomes class="progress-bar bg-danger".

	Replaced .active for animated progress bars with .progress-bar-animated.

Carousel

	Overhauled the entire component to simplify design and styling. We have fewer styles for you to override, new indicators, and new icons.

	All CSS has been un-nested and renamed, ensuring each class is prefixed with .carousel-.

	For carousel items, .next, .prev, .left, and .right are now .carousel-item-next, .carousel-item-prev, .carousel-item-left, and .carousel-item-right.

	.item is also now .carousel-item.

	For prev/next controls, .carousel-control.right and .carousel-control.left are now .carousel-control-next and .carousel-control-prev, meaning they no longer require a specific base class.

	Removed all responsive styling, deferring to utilities (e.g., showing captions on certain viewports) and custom styles as needed.

	Removed image overrides for images in carousel items, deferring to utilities.

	Tweaked the Carousel example to include the new markup and styles.

Tables

	Removed support for styled nested tables. All table styles are now inherited in v4 for simpler selectors.

	Added inverse table variant.

Utilities

	Display, hidden, and more:

	Made display utilities responsive (e.g., .d-none and d-{sm,md,lg,xl}-none).

	Dropped the bulk of .hidden-* utilities for new [display utilities]({{ site.baseurl }}/docs/{{ site.docs_version }}/utilities/display/). For example, instead of .hidden-sm-up, use .d-sm-none. Renamed the .hidden-print utilities to use the display utility naming scheme. More info under the Responsive utilities section of this page.

	Added .float-{sm,md,lg,xl}-{left,right,none} classes for responsive floats and removed .pull-left and .pull-right since they're redundant to .float-left and .float-right.

	Type:

	Added responsive variations to our text alignment classes .text-{sm,md,lg,xl}-{left,center,right}.

	Alignment and spacing:

	Added new [responsive margin and padding utilities]({{ site.baseurl }}/docs/{{ site.docs_version }}/utilities/spacing/) for all sides, plus vertical and horizontal shorthands.

	Added boatload of [flexbox utilities]({{ site.baseurl }}/docs/{{ site.docs_version }}/utilities/flex/).

	Dropped .center-block for the new .mx-auto class.

	Clearfix updated to drop support for older browser versions.

Vendor prefix mixins

Bootstrap 3's vendor prefix [https://www.lifewire.com/css-vendor-prefixes-3466867] mixins, which were deprecated in v3.2.0, have been removed in Bootstrap 4. Since we use Autoprefixer [https://github.com/postcss/autoprefixer], they're no longer necessary.

Removed the following mixins: animation, animation-delay, animation-direction, animation-duration, animation-fill-mode, animation-iteration-count, animation-name, animation-timing-function, backface-visibility, box-sizing, content-columns, hyphens, opacity, perspective, perspective-origin, rotate, rotateX, rotateY, scale, scaleX, scaleY, skew, transform-origin, transition-delay, transition-duration, transition-property, transition-timing-function, transition-transform, translate, translate3d, user-select

Documentation

Our documentation received an upgrade across the board as well. Here's the low down:

	We're still using Jekyll, but we have plugins in the mix:

	bugify.rb is used to efficiently list out the entries on our [browser bugs]({{ site.baseurl }}/docs/{{ site.docs_version }}/browser-bugs/) page.

	example.rb is a custom fork of the default highlight.rb plugin, allowing for easier example-code handling.

	callout.rb is a similar custom fork of that, but designed for our special docs callouts.

	jekyll-toc [https://github.com/toshimaru/jekyll-toc] is used to generate our table of contents.

	All docs content has been rewritten in Markdown (instead of HTML) for easier editing.

	Pages have been reorganized for simpler content and a more approachable hierarchy.

	We moved from regular CSS to SCSS to take full advantage of Bootstrap's variables, mixins, and more.

Responsive utilities

All @screen- variables have been removed in v4.0.0. Use the media-breakpoint-up(), media-breakpoint-down(), or media-breakpoint-only() Sass mixins or the $grid-breakpoints Sass map instead.

Our responsive utility classes have largely been removed in favor of explicit display utilities.

	The .hidden and .show classes have been removed because they conflicted with jQuery's $(...).hide() and $(...).show() methods. Instead, try toggling the [hidden] attribute or use inline styles like style="display: none;" and style="display: block;".

	All .hidden- classes have been removed, save for the print utilities which have been renamed.

	Removed from v3: .hidden-xs .hidden-sm .hidden-md .hidden-lg .visible-xs-block .visible-xs-inline .visible-xs-inline-block .visible-sm-block .visible-sm-inline .visible-sm-inline-block .visible-md-block .visible-md-inline .visible-md-inline-block .visible-lg-block .visible-lg-inline .visible-lg-inline-block

	Removed from v4 alphas: .hidden-xs-up .hidden-xs-down .hidden-sm-up .hidden-sm-down .hidden-md-up .hidden-md-down .hidden-lg-up .hidden-lg-down

	Print utilities no longer start with .hidden- or .visible-, but with .d-print-.

	Old names: .visible-print-block, .visible-print-inline, .visible-print-inline-block, .hidden-print

	New classes: .d-print-block, .d-print-inline, .d-print-inline-block, .d-print-none

Rather than using explicit .visible-* classes, you make an element visible by simply not hiding it at that screen size. You can combine one .d-*-none class with one .d-*-block class to show an element only on a given interval of screen sizes (e.g. .d-none.d-md-block.d-xl-none shows the element only on medium and large devices).

Note that the changes to the grid breakpoints in v4 means that you'll need to go one breakpoint larger to achieve the same results. The new responsive utility classes don't attempt to accommodate less common cases where an element's visibility can't be expressed as a single contiguous range of viewport sizes; you will instead need to use custom CSS in such cases.

 layout: docs title: Brand guidelines description: Documentation and examples for Bootstrap's logo and brand usage guidelines. group: about toc: true

layout: docs
title: Brand guidelines
description: Documentation and examples for Bootstrap's logo and brand usage guidelines.
group: about
toc: true

Have a need for Bootstrap's brand resources? Great! We have only a few guidelines we follow, and in turn ask you to follow as well. These guidelines were inspired by MailChimp's Brand Assets [https://mailchimp.com/about/brand-assets/].

Mark and logo

Use either the Bootstrap mark (a capital B) or the standard logo (just Bootstrap). It should always appear in San Francisco Display Semibold. Do not use the Twitter bird in association with Bootstrap.

 [image: Bootstrap]

 layout: docs title: License FAQs description: Commonly asked questions about Bootstrap's open source license. group: about

layout: docs
title: License FAQs
description: Commonly asked questions about Bootstrap's open source license.
group: about

Bootstrap is released under the MIT license and is copyright {{ site.time | date: "%Y" }} Twitter. Boiled down to smaller chunks, it can be described with the following conditions.

It requires you to:

	Keep the license and copyright notice included in Bootstrap's CSS and JavaScript files when you use them in your works

It permits you to:

	Freely download and use Bootstrap, in whole or in part, for personal, private, company internal, or commercial purposes

	Use Bootstrap in packages or distributions that you create

	Modify the source code

	Grant a sublicense to modify and distribute Bootstrap to third parties not included in the license

It forbids you to:

	Hold the authors and license owners liable for damages as Bootstrap is provided without warranty

	Hold the creators or copyright holders of Bootstrap liable

	Redistribute any piece of Bootstrap without proper attribution

	Use any marks owned by Twitter in any way that might state or imply that Twitter endorses your distribution

	Use any marks owned by Twitter in any way that might state or imply that you created the Twitter software in question

It does not require you to:

	Include the source of Bootstrap itself, or of any modifications you may have made to it, in any redistribution you may assemble that includes it

	Submit changes that you make to Bootstrap back to the Bootstrap project (though such feedback is encouraged)

The full Bootstrap license is located [in the project repository]({{ site.repo }}/blob/v{{ site.current_version }}/LICENSE) for more information.

 Team

layout: docs
title: About
description: Learn more about the team maintaining Bootstrap, how and why the project started, and how to get involved.
group: about
redirect_from:

	"/about/"

	"/docs/4.3/about/"

Team

Bootstrap is maintained by a small team of developers [https://github.com/orgs/twbs/people] on GitHub. We're actively looking to grow this team and would love to hear from you if you're excited about CSS at scale, writing and maintaining vanilla JavaScript plugins, and improving build tooling processes for frontend code.

History

Originally created by a designer and a developer at Twitter, Bootstrap has become one of the most popular front-end frameworks and open source projects in the world.

Bootstrap was created at Twitter in mid-2010 by @mdo [https://twitter.com/mdo] and @fat [https://twitter.com/fat]. Prior to being an open-sourced framework, Bootstrap was known as Twitter Blueprint. A few months into development, Twitter held its first Hack Week [https://blog.twitter.com/engineering/en_us/a/2010/hack-week.html] and the project exploded as developers of all skill levels jumped in without any external guidance. It served as the style guide for internal tools development at the company for over a year before its public release, and continues to do so today.

Originally released [https://blog.twitter.com/developer/en_us/a/2011/bootstrap-twitter.html] on Friday, August 19, 2011, we've since had over [twenty releases]({{ site.repo }}/releases), including two major rewrites with v2 and v3. With Bootstrap 2, we added responsive functionality to the entire framework as an optional stylesheet. Building on that with Bootstrap 3, we rewrote the library once more to make it responsive by default with a mobile first approach.

With Bootstrap 4, we once again rewrote the project to account for two key architectural changes: a migration to Sass and the move to CSS's flexbox. Our intention is to help in a small way to move the web development community forward by pushing for newer CSS properties, fewer dependencies, and new technologies across more modern browsers.

Get involved

Get involved with Bootstrap development by [opening an issue]({{ site.repo }}/issues/new) or submitting a pull request. Read our [contributing guidelines]({{ site.repo }}/blob/v{{ site.current_version }}/.github/CONTRIBUTING.md) for information on how we develop.

 layout: docs title: Team description: An overview of the founding team and core contributors to Bootstrap. group: about

layout: docs
title: Team
description: An overview of the founding team and core contributors to Bootstrap.
group: about

Bootstrap is maintained by the founding team and a small group of invaluable core contributors, with the massive support and involvement of our community.

 {% for member in site.data.core-team %}

 [image: @{{ member.user }}]

 {{ member.name }} @{{ member.user }}

 layout: docs title: Translations description: Links to community-translated Bootstrap documentation sites. group: about

layout: docs
title: Translations
description: Links to community-translated Bootstrap documentation sites.
group: about

Community members have translated Bootstrap's documentation into various languages. None are officially supported and they may not always be up to date.

{% for language in site.data.translations %}
 	{{ language.description }} ({{ language.name }})

{% endfor %}

We don't help organize or host translations, we just link to them.

Finished a new or better translation? Open a pull request to add it to our list.

 Examples

layout: docs
title: Alerts
description: Provide contextual feedback messages for typical user actions with the handful of available and flexible alert messages.
group: components
redirect_from:

	"/components/"

	"/docs/4.3/components/"
toc: true

Examples

Alerts are available for any length of text, as well as an optional dismiss button. For proper styling, use one of the eight required contextual classes (e.g., .alert-success). For inline dismissal, use the alerts jQuery plugin.

{% capture example %}
{% for color in site.data.theme-colors %}

 A simple {{ color.name }} alert—check it out!

{% endfor %}
{% endcapture %}
{% include example.html content=example %}{% include callout-warning-color-assistive-technologies.md %}

Link color

Use the .alert-link utility class to quickly provide matching colored links within any alert.

{% capture example %}
{% for color in site.data.theme-colors %}

 A simple {{ color.name }} alert with an example link. Give it a click if you like.

{% endfor %}
{% endcapture %}
{% include example.html content=example %}

Additional content

Alerts can also contain additional HTML elements like headings, paragraphs and dividers.

{% capture example %}

 Well done!

 Aww yeah, you successfully read this important alert message. This example text is going to run a bit longer so that you can see how spacing within an alert works with this kind of content.

 Whenever you need to, be sure to use margin utilities to keep things nice and tidy.

 layout: docs title: Badges description: Documentation and examples for badges, our small count and labeling component. group: components toc: true

layout: docs
title: Badges
description: Documentation and examples for badges, our small count and labeling component.
group: components
toc: true

Example

Badges scale to match the size of the immediate parent element by using relative font sizing and em units.

{% capture example %}

Example heading New

Example heading New

Example heading New

Example heading New

Example heading New

Example heading New

{% endcapture %}
{% include example.html content=example %}Badges can be used as part of links or buttons to provide a counter.

{% capture example %}

Notifications 4

{% endcapture %}
{% include example.html content=example %}

Note that depending on how they are used, badges may be confusing for users of screen readers and similar assistive technologies. While the styling of badges provides a visual cue as to their purpose, these users will simply be presented with the content of the badge. Depending on the specific situation, these badges may seem like random additional words or numbers at the end of a sentence, link, or button.

Unless the context is clear (as with the "Notifications" example, where it is understood that the "4" is the number of notifications), consider including additional context with a visually hidden piece of additional text.

{% capture example %}

Profile 9
unread messages

{% endcapture %}
{% include example.html content=example %}

Contextual variations

Add any of the below mentioned modifier classes to change the appearance of a badge.

{% capture example %}
{% for color in site.data.theme-colors %}
{{ color.name | capitalize }}{% endfor %}
{% endcapture %}
{% include example.html content=example %}

{% include callout-warning-color-assistive-technologies.md %}

Pill badges

Use the .badge-pill modifier class to make badges more rounded (with a larger border-radius and additional horizontal padding). Useful if you miss the badges from v3.

{% capture example %}
{% for color in site.data.theme-colors %}
{{ color.name | capitalize }}{% endfor %}
{% endcapture %}
{% include example.html content=example %}

Links

Using the contextual .badge-* classes on an <a> element quickly provide actionable badges with hover and focus states.

{% capture example %}
{% for color in site.data.theme-colors %}
{{ color.name | capitalize }}{% endfor %}
{% endcapture %}
{% include example.html content=example %}

 layout: docs title: Breadcrumb description: Indicate the current page's location within a navigational hierarchy that automatically adds separators via CSS. group: components

layout: docs
title: Breadcrumb
description: Indicate the current page's location within a navigational hierarchy that automatically adds separators via CSS.
group: components

Example

{% capture example %}

 	Home

 	Home

 	Library

 	Home

 	Library

 	Data

{% endcapture %}
{% include example.html content=example %}

Changing the separator

Separators are automatically added in CSS through ::before [https://developer.mozilla.org/en-US/docs/Web/CSS/::before] and content [https://developer.mozilla.org/en-US/docs/Web/CSS/content]. They can be changed by changing $breadcrumb-divider. The quote [https://sass-lang.com/documentation/Sass/Script/Functions.html#quote-instance_method] function is needed to generate the quotes around a string, so if you want > as separator, you can use this:

$breadcrumb-divider: quote(">");

It's also possible to use a base64 embedded SVG icon:

$breadcrumb-divider: url();

The separator can be removed by setting $breadcrumb-divider to none:

$breadcrumb-divider: none;

Accessibility

Since breadcrumbs provide a navigation, it's a good idea to add a meaningful label such as aria-label="breadcrumb" to describe the type of navigation provided in the <nav> element, as well as applying an aria-current="page" to the last item of the set to indicate that it represents the current page.

For more information, see the WAI-ARIA Authoring Practices for the breadcrumb pattern [https://www.w3.org/TR/wai-aria-practices/#breadcrumb].

 layout: docs title: Button group description: Group a series of buttons together on a single line with the button group, and super-power them with JavaScript. group: components toc: true

layout: docs
title: Button group
description: Group a series of buttons together on a single line with the button group, and super-power them with JavaScript.
group: components
toc: true

Basic example

Wrap a series of buttons with .btn in .btn-group. Add on optional JavaScript radio and checkbox style behavior with [our buttons plugin]({{ site.baseurl }}/docs/{{ site.docs_version }}/components/buttons/#button-plugin).

{% capture example %}

 Left
 Middle
 Right

{% endcapture %}
{% include example.html content=example %}{% capture callout %}

Ensure correct role and provide a label

In order for assistive technologies (such as screen readers) to convey that a series of buttons is grouped, an appropriate role attribute needs to be provided. For button groups, this would be role="group", while toolbars should have a role="toolbar".

In addition, groups and toolbars should be given an explicit label, as most assistive technologies will otherwise not announce them, despite the presence of the correct role attribute. In the examples provided here, we use aria-label, but alternatives such as aria-labelledby can also be used.
{% endcapture %}
{% include callout.html content=callout type="warning" %}

Button toolbar

Combine sets of button groups into button toolbars for more complex components. Use utility classes as needed to space out groups, buttons, and more.

{% capture example %}

 1
 2
 3
 4

 5
 6
 7

 8

{% endcapture %}
{% include example.html content=example %}Feel free to mix input groups with button groups in your toolbars. Similar to the example above, you'll likely need some utilities though to space things properly.

{% capture example %}

 1
 2
 3
 4

 @

 layout: docs title: Buttons description: Use Bootstrap's custom button styles for actions in forms, dialogs, and more with support for multiple sizes, states, and more. group: components toc: true

layout: docs
title: Buttons
description: Use Bootstrap's custom button styles for actions in forms, dialogs, and more with support for multiple sizes, states, and more.
group: components
toc: true

Examples

Bootstrap includes several predefined button styles, each serving its own semantic purpose, with a few extras thrown in for more control.

{% capture example %}
{% for color in site.data.theme-colors %}
{{ color.name | capitalize }}{% endfor %}

Link
{% endcapture %}
{% include example.html content=example %}

{% include callout-warning-color-assistive-technologies.md %}

Button tags

The .btn classes are designed to be used with the <button> element. However, you can also use these classes on <a> or <input> elements (though some browsers may apply a slightly different rendering).

When using button classes on <a> elements that are used to trigger in-page functionality (like collapsing content), rather than linking to new pages or sections within the current page, these links should be given a role="button" to appropriately convey their purpose to assistive technologies such as screen readers.

{% capture example %}
Link
Button

{% endcapture %}
{% include example.html content=example %}

 layout: docs title: Cards description: Bootstrap's cards provide a flexible and extensible content container with multiple variants and options. group: components toc: true

layout: docs
title: Cards
description: Bootstrap's cards provide a flexible and extensible content container with multiple variants and options.
group: components
toc: true

About

A card is a flexible and extensible content container. It includes options for headers and footers, a wide variety of content, contextual background colors, and powerful display options. If you're familiar with Bootstrap 3, cards replace our old panels, wells, and thumbnails. Similar functionality to those components is available as modifier classes for cards.

Example

Cards are built with as little markup and styles as possible, but still manage to deliver a ton of control and customization. Built with flexbox, they offer easy alignment and mix well with other Bootstrap components. They have no margin by default, so use [spacing utilities]({{ site.baseurl }}/docs/{{ site.docs_version }}/utilities/spacing/) as needed.

Below is an example of a basic card with mixed content and a fixed width. Cards have no fixed width to start, so they'll naturally fill the full width of its parent element. This is easily customized with our various sizing options.

{% capture example %}

 {% include icons/placeholder.svg width="100%" height="180" class="card-img-top" text="Image cap" %}

 Card title

 Some quick example text to build on the card title and make up the bulk of the card's content.

 Go somewhere

{% endcapture %}
{% include example.html content=example %}

Content types

Cards support a wide variety of content, including images, text, list groups, links, and more. Below are examples of what's supported.

Body

The building block of a card is the .card-body. Use it whenever you need a padded section within a card.

{% capture example %}

 This is some text within a card body.

{% endcapture %}
{% include example.html content=example %}

Titles, text, and links

Card titles are used by adding .card-title to a <h*> tag. In the same way, links are added and placed next to each other by adding .card-link to an <a> tag.

Subtitles are used by adding a .card-subtitle to a <h*> tag. If the .card-title and the .card-subtitle items are placed in a .card-body item, the card title and subtitle are aligned nicely.

{% capture example %}

 Card title

 Card subtitle

 Some quick example text to build on the card title and make up the bulk of the card's content.

 Card link
 Another link

{% endcapture %}
{% include example.html content=example %}

Images

.card-img-top places an image to the top of the card. With .card-text, text can be added to the card. Text within .card-text can also be styled with the standard HTML tags.

{% capture example %}

 {% include icons/placeholder.svg width="100%" height="180" class="card-img-top" text="Image cap" %}

 Some quick example text to build on the card title and make up the bulk of the card's content.

{% endcapture %}
{% include example.html content=example %}

List groups

Create lists of content in a card with a flush list group.

{% capture example %}

 	Cras justo odio

 	Dapibus ac facilisis in

 	Vestibulum at eros

{% endcapture %}
{% include example.html content=example %}{% capture example %}

 Featured

 	Cras justo odio

 	Dapibus ac facilisis in

 	Vestibulum at eros

{% endcapture %}
{% include example.html content=example %}

Kitchen sink

Mix and match multiple content types to create the card you need, or throw everything in there. Shown below are image styles, blocks, text styles, and a list group—all wrapped in a fixed-width card.

{% capture example %}

 {% include icons/placeholder.svg width="100%" height="180" class="card-img-top" text="Image cap" %}

 Card title

 Some quick example text to build on the card title and make up the bulk of the card's content.

 	Cras justo odio

 	Dapibus ac facilisis in

 	Vestibulum at eros

 Card link
 Another link

{% endcapture %}
{% include example.html content=example %}

Header and footer

Add an optional header and/or footer within a card.

{% capture example %}

 Featured

 Special title treatment

 With supporting text below as a natural lead-in to additional content.

 Go somewhere

{% endcapture %}
{% include example.html content=example %}Card headers can be styled by adding .card-header to <h*> elements.

{% capture example %}

 Featured

 Special title treatment

 With supporting text below as a natural lead-in to additional content.

 Go somewhere

{% endcapture %}
{% include example.html content=example %}{% capture example %}

 Quote

 Lorem ipsum dolor sit amet, consectetur adipiscing elit. Integer posuere erat a ante.

 Someone famous in Source Title

{% endcapture %}
{% include example.html content=example %}{% capture example %}

 Featured

 Special title treatment

 With supporting text below as a natural lead-in to additional content.

 Go somewhere

 2 days ago

{% endcapture %}
{% include example.html content=example %}

Sizing

Cards assume no specific width to start, so they'll be 100% wide unless otherwise stated. You can change this as needed with custom CSS, grid classes, grid Sass mixins, or utilities.

Using grid markup

Using the grid, wrap cards in columns and rows as needed.

{% capture example %}

 Special title treatment

 With supporting text below as a natural lead-in to additional content.

 Go somewhere

 Special title treatment

 With supporting text below as a natural lead-in to additional content.

 Go somewhere

{% endcapture %}
{% include example.html content=example %}

Using utilities

Use our handful of [available sizing utilities]({{ site.baseurl }}/docs/{{ site.docs_version }}/utilities/sizing/) to quickly set a card's width.

{% capture example %}

 Card title

 With supporting text below as a natural lead-in to additional content.

 Button

 Card title

 With supporting text below as a natural lead-in to additional content.

 Button

{% endcapture %}
{% include example.html content=example %}

Using custom CSS

Use custom CSS in your stylesheets or as inline styles to set a width.

{% capture example %}

 Special title treatment

 With supporting text below as a natural lead-in to additional content.

 Go somewhere

{% endcapture %}
{% include example.html content=example %}

Text alignment

You can quickly change the text alignment of any card—in its entirety or specific parts—with our [text align classes]({{ site.baseurl }}/docs/{{ site.docs_version }}/utilities/text/#text-alignment).

{% capture example %}

 Special title treatment

 With supporting text below as a natural lead-in to additional content.

 Go somewhere

 Special title treatment

 With supporting text below as a natural lead-in to additional content.

 Go somewhere

 Special title treatment

 With supporting text below as a natural lead-in to additional content.

 Go somewhere

{% endcapture %}
{% include example.html content=example %}

Navigation

Add some navigation to a card's header (or block) with Bootstrap's [nav components]({{ site.baseurl }}/docs/{{ site.docs_version }}/components/navs/).

{% capture example %}

 	
 Active

 	
 Link

 	
 Disabled

 Special title treatment

 With supporting text below as a natural lead-in to additional content.

 Go somewhere

{% endcapture %}
{% include example.html content=example %}{% capture example %}

 	
 Active

 	
 Link

 	
 Disabled

 Special title treatment

 With supporting text below as a natural lead-in to additional content.

 Go somewhere

{% endcapture %}
{% include example.html content=example %}

Images

Cards include a few options for working with images. Choose from appending "image caps" at either end of a card, overlaying images with card content, or simply embedding the image in a card.

Image caps

Similar to headers and footers, cards can include top and bottom "image caps"—images at the top or bottom of a card.

{% capture example %}

 {% include icons/placeholder.svg width="100%" height="180" class="card-img-top" text="Image cap" %}

 Card title

 This is a wider card with supporting text below as a natural lead-in to additional content. This content is a little bit longer.

 Last updated 3 mins ago

 Card title

 This is a wider card with supporting text below as a natural lead-in to additional content. This content is a little bit longer.

 Last updated 3 mins ago

 {% include icons/placeholder.svg width="100%" height="180" class="card-img-bottom" text="Image cap" %}

{% endcapture %}
{% include example.html content=example %}

Image overlays

Turn an image into a card background and overlay your card's text. Depending on the image, you may or may not need additional styles or utilities.

{% capture example %}

 {% include icons/placeholder.svg width="100%" height="270" class="bd-placeholder-img-lg card-img" text="Card image" %}

 Card title

 This is a wider card with supporting text below as a natural lead-in to additional content. This content is a little bit longer.

 Last updated 3 mins ago

{% endcapture %}
{% include example.html content=example %}{% capture callout %}
Note that content should not be larger than the height of the image. If content is larger than the image the content will be displayed outside the image.
{% endcapture %}
{% include callout.html content=callout type="info" %}

Horizontal

Using a combination of grid and utility classes, cards can be made horizontal in a mobile-friendly and responsive way. In the example below, we remove the grid gutters with .no-gutters and use .col-md-* classes to make the card horizontal at the md breakpoint. Further adjustments may be needed depending on your card content.

{% capture example %}

 {% include icons/placeholder.svg width="100%" height="250" class="" text="Image" %}

 Card title

 This is a wider card with supporting text below as a natural lead-in to additional content. This content is a little bit longer.

 Last updated 3 mins ago

{% endcapture %}
{% include example.html content=example %}

Card styles

Cards include various options for customizing their backgrounds, borders, and color.

Background and color

Use [text and background utilities]({{ site.baseurl }}/docs/{{ site.docs_version }}/utilities/colors/) to change the appearance of a card.

{% capture example %}
{% for color in site.data.theme-colors %}

 layout: docs title: Carousel description: A slideshow component for cycling through elements—images or slides of text—like a carousel. group: components toc: true

layout: docs
title: Carousel
description: A slideshow component for cycling through elements—images or slides of text—like a carousel.
group: components
toc: true

How it works

The carousel is a slideshow for cycling through a series of content, built with CSS 3D transforms and a bit of JavaScript. It works with a series of images, text, or custom markup. It also includes support for previous/next controls and indicators.

In browsers where the Page Visibility API [https://www.w3.org/TR/page-visibility/] is supported, the carousel will avoid sliding when the webpage is not visible to the user (such as when the browser tab is inactive, the browser window is minimized, etc.).

{% include callout-info-prefersreducedmotion.md %}

Please be aware that nested carousels are not supported, and carousels are generally not compliant with accessibility standards.

Lastly, if you're building our JavaScript from source, it [requires util.js]({{ site.baseurl }}/docs/{{ site.docs_version }}/getting-started/javascript/#util).

Example

Carousels don't automatically normalize slide dimensions. As such, you may need to use additional utilities or custom styles to appropriately size content. While carousels support previous/next controls and indicators, they're not explicitly required. Add and customize as you see fit.

The .active class needs to be added to one of the slides otherwise the carousel will not be visible. Also be sure to set a unique id on the .carousel for optional controls, especially if you're using multiple carousels on a single page. Control and indicator elements must have a data-target attribute (or href for links) that matches the id of the .carousel element.

Slides only

Here's a carousel with slides only. Note the presence of the .d-block and .w-100 on carousel images to prevent browser default image alignment.

{% capture example %}

 {% include icons/placeholder.svg width="800" height="400" class="bd-placeholder-img-lg d-block w-100" color="#555" background="#777" text="First slide" %}

 {% include icons/placeholder.svg width="800" height="400" class="bd-placeholder-img-lg d-block w-100" color="#444" background="#666" text="Second slide" %}

 {% include icons/placeholder.svg width="800" height="400" class="bd-placeholder-img-lg d-block w-100" color="#333" background="#555" text="Third slide" %}

{% endcapture %}
{% include example.html content=example %}

With controls

Adding in the previous and next controls:

{% capture example %}

 {% include icons/placeholder.svg width="800" height="400" class="bd-placeholder-img-lg d-block w-100" color="#555" background="#777" text="First slide" %}

 {% include icons/placeholder.svg width="800" height="400" class="bd-placeholder-img-lg d-block w-100" color="#444" background="#666" text="Second slide" %}

 {% include icons/placeholder.svg width="800" height="400" class="bd-placeholder-img-lg d-block w-100" color="#333" background="#555" text="Third slide" %}

 Previous

 Next

{% endcapture %}
{% include example.html content=example %}

With indicators

You can also add the indicators to the carousel, alongside the controls, too.

{% capture example %}

 	

 	

 	

 {% include icons/placeholder.svg width="800" height="400" class="bd-placeholder-img-lg d-block w-100" color="#555" background="#777" text="First slide" %}

 {% include icons/placeholder.svg width="800" height="400" class="bd-placeholder-img-lg d-block w-100" color="#444" background="#666" text="Second slide" %}

 {% include icons/placeholder.svg width="800" height="400" class="bd-placeholder-img-lg d-block w-100" color="#333" background="#555" text="Third slide" %}

 Previous

 Next

{% endcapture %}
{% include example.html content=example %}

With captions

Add captions to your slides easily with the .carousel-caption element within any .carousel-item. They can be easily hidden on smaller viewports, as shown below, with optional [display utilities]({{ site.baseurl }}/docs/{{ site.docs_version }}/utilities/display/). We hide them initially with .d-none and bring them back on medium-sized devices with .d-md-block.

{% capture example %}

 	

 	

 	

 {% include icons/placeholder.svg width="800" height="400" class="bd-placeholder-img-lg d-block w-100" color="#555" background="#777" text="First slide" %}

 First slide label

 Nulla vitae elit libero, a pharetra augue mollis interdum.

 {% include icons/placeholder.svg width="800" height="400" class="bd-placeholder-img-lg d-block w-100" color="#444" background="#666" text="Second slide" %}

 Second slide label

 Lorem ipsum dolor sit amet, consectetur adipiscing elit.

 {% include icons/placeholder.svg width="800" height="400" class="bd-placeholder-img-lg d-block w-100" color="#333" background="#555" text="Third slide" %}

 Third slide label

 Praesent commodo cursus magna, vel scelerisque nisl consectetur.

 Previous

 Next

{% endcapture %}
{% include example.html content=example %}

Crossfade

Add .carousel-fade to your carousel to animate slides with a fade transition instead of a slide.

{% capture example %}

 {% include icons/placeholder.svg width="800" height="400" class="bd-placeholder-img-lg d-block w-100" color="#555" background="#777" text="First slide" %}

 {% include icons/placeholder.svg width="800" height="400" class="bd-placeholder-img-lg d-block w-100" color="#444" background="#666" text="Second slide" %}

 {% include icons/placeholder.svg width="800" height="400" class="bd-placeholder-img-lg d-block w-100" color="#333" background="#555" text="Third slide" %}

 Previous

 Next

{% endcapture %}
{% include example.html content=example %}

Individual .carousel-item interval

Add data-interval="" to a .carousel-item to change the amount of time to delay between automatically cycling to the next item.

{% capture example %}

 {% include icons/placeholder.svg width="800" height="400" class="bd-placeholder-img-lg d-block w-100" color="#555" background="#777" text="First slide" %}

 {% include icons/placeholder.svg width="800" height="400" class="bd-placeholder-img-lg d-block w-100" color="#444" background="#666" text="Second slide" %}

 {% include icons/placeholder.svg width="800" height="400" class="bd-placeholder-img-lg d-block w-100" color="#333" background="#555" text="Third slide" %}

 Previous

 Next

{% endcapture %}
{% include example.html content=example %}

Usage

Via data attributes

Use data attributes to easily control the position of the carousel. data-slide accepts the keywords prev or next, which alters the slide position relative to its current position. Alternatively, use data-slide-to to pass a raw slide index to the carousel data-slide-to="2", which shifts the slide position to a particular index beginning with 0.

The data-ride="carousel" attribute is used to mark a carousel as animating starting at page load. If you don't use data-ride="carousel" to initialize your carousel, you have to initialize it yourself. It cannot be used in combination with (redundant and unnecessary) explicit JavaScript initialization of the same carousel.

Via JavaScript

Call carousel manually with:

{% highlight js %}
$('.carousel').carousel()
{% endhighlight %}

Options

Options can be passed via data attributes or JavaScript. For data attributes, append the option name to data-, as in data-interval="".

 	Name
 	Type
 	Default
 	Description

 	interval
 	number
 	5000
 	The amount of time to delay between automatically cycling an item. If false, carousel will not automatically cycle.

 	keyboard
 	boolean
 	true
 	Whether the carousel should react to keyboard events.

 	pause
 	string | boolean
 	"hover"
 	If set to "hover", pauses the cycling of the carousel on mouseenter and resumes the cycling of the carousel on mouseleave. If set to false, hovering over the carousel won't pause it.

 On touch-enabled devices, when set to "hover", cycling will pause on touchend (once the user finished interacting with the carousel) for two intervals, before automatically resuming. Note that this is in addition to the above mouse behavior.

 	ride
 	string
 	false
 	Autoplays the carousel after the user manually cycles the first item. If "carousel", autoplays the carousel on load.

 	wrap
 	boolean
 	true
 	Whether the carousel should cycle continuously or have hard stops.

 	touch
 	boolean
 	true
 	Whether the carousel should support left/right swipe interactions on touchscreen devices.

Methods

{% include callout-danger-async-methods.md %}

.carousel(options)

Initializes the carousel with an optional options object and starts cycling through items.

{% highlight js %}
$('.carousel').carousel({
interval: 2000
})
{% endhighlight %}

.carousel('cycle')

Cycles through the carousel items from left to right.

.carousel('pause')

Stops the carousel from cycling through items.

.carousel(number)

Cycles the carousel to a particular frame (0 based, similar to an array). Returns to the caller before the target item has been shown (i.e. before the slid.bs.carousel event occurs).

.carousel('prev')

Cycles to the previous item. Returns to the caller before the previous item has been shown (i.e. before the slid.bs.carousel event occurs).

.carousel('next')

Cycles to the next item. Returns to the caller before the next item has been shown (i.e. before the slid.bs.carousel event occurs).

.carousel('dispose')

Destroys an element's carousel.

Events

Bootstrap's carousel class exposes two events for hooking into carousel functionality. Both events have the following additional properties:

	direction: The direction in which the carousel is sliding (either "left" or "right").

	relatedTarget: The DOM element that is being slid into place as the active item.

	from: The index of the current item

	to: The index of the next item

All carousel events are fired at the carousel itself (i.e. at the <div class="carousel">).

 	Event Type
 	Description

 	slide.bs.carousel
 	This event fires immediately when the slide instance method is invoked.

 	slid.bs.carousel
 	This event is fired when the carousel has completed its slide transition.

{% highlight js %}
$('#myCarousel').on('slide.bs.carousel', function () {
// do something...
})
{% endhighlight %}

Change transition duration

The transition duration of .carousel-item can be changed with the $carousel-transition Sass variable before compiling or custom styles if you're using the compiled CSS. If multiple transitions are applied, make sure the transform transition is defined first (eg. transition: transform 2s ease, opacity .5s ease-out).

 layout: docs title: Collapse description: Toggle the visibility of content across your project with a few classes and our JavaScript plugins. group: components toc: true

layout: docs
title: Collapse
description: Toggle the visibility of content across your project with a few classes and our JavaScript plugins.
group: components
toc: true

How it works

The collapse JavaScript plugin is used to show and hide content. Buttons or anchors are used as triggers that are mapped to specific elements you toggle. Collapsing an element will animate the height from its current value to 0. Given how CSS handles animations, you cannot use padding on a .collapse element. Instead, use the class as an independent wrapping element.

{% include callout-info-prefersreducedmotion.md %}

Example

Click the buttons below to show and hide another element via class changes:

	.collapse hides content

	.collapsing is applied during transitions

	.collapse.show shows content

You can use a link with the href attribute, or a button with the data-target attribute. In both cases, the data-toggle="collapse" is required.

{% capture example %}

 Link with href

 Button with data-target

 Anim pariatur cliche reprehenderit, enim eiusmod high life accusamus terry richardson ad squid. Nihil anim keffiyeh helvetica, craft beer labore wes anderson cred nesciunt sapiente ea proident.

{% endcapture %}
{% include example.html content=example %}

Multiple targets

A <button> or <a> can show and hide multiple elements by referencing them with a JQuery selector in its href or data-target attribute.
Multiple <button> or <a> can show and hide an element if they each reference it with their href or data-target attribute

{% capture example %}

 Toggle first element
 Toggle second element
 Toggle both elements

 Anim pariatur cliche reprehenderit, enim eiusmod high life accusamus terry richardson ad squid. Nihil anim keffiyeh helvetica, craft beer labore wes anderson cred nesciunt sapiente ea proident.

 Anim pariatur cliche reprehenderit, enim eiusmod high life accusamus terry richardson ad squid. Nihil anim keffiyeh helvetica, craft beer labore wes anderson cred nesciunt sapiente ea proident.

{% endcapture %}
{% include example.html content=example %}

Accordion example

Using the [card]({{ site.baseurl }}/docs/{{ site.docs_version }}/components/card/) component, you can extend the default collapse behavior to create an accordion. To properly achieve the accordion style, be sure to use .accordion as a wrapper.

{% capture example %}

 Collapsible Group Item #1

<div id="collapseOne" class="collapse show" aria-labelledby="headingOne" data-parent="#accordionExample">
 <div class="card-body">
 Anim pariatur cliche reprehenderit, enim eiusmod high life accusamus terry richardson ad squid. 3 wolf moon officia aute, non cupidatat skateboard dolor brunch. Food truck quinoa nesciunt laborum eiusmod. Brunch 3 wolf moon tempor, sunt aliqua put a bird on it squid single-origin coffee nulla assumenda shoreditch et. Nihil anim keffiyeh helvetica, craft beer labore wes anderson cred nesciunt sapiente ea proident. Ad vegan excepteur butcher vice lomo. Leggings occaecat craft beer farm-to-table, raw denim aesthetic synth nesciunt you probably haven't heard of them accusamus labore sustainable VHS.
 </div>
</div>

 Collapsible Group Item #2

 Anim pariatur cliche reprehenderit, enim eiusmod high life accusamus terry richardson ad squid. 3 wolf moon officia aute, non cupidatat skateboard dolor brunch. Food truck quinoa nesciunt laborum eiusmod. Brunch 3 wolf moon tempor, sunt aliqua put a bird on it squid single-origin coffee nulla assumenda shoreditch et. Nihil anim keffiyeh helvetica, craft beer labore wes anderson cred nesciunt sapiente ea proident. Ad vegan excepteur butcher vice lomo. Leggings occaecat craft beer farm-to-table, raw denim aesthetic synth nesciunt you probably haven't heard of them accusamus labore sustainable VHS.

 Collapsible Group Item #3

 Anim pariatur cliche reprehenderit, enim eiusmod high life accusamus terry richardson ad squid. 3 wolf moon officia aute, non cupidatat skateboard dolor brunch. Food truck quinoa nesciunt laborum eiusmod. Brunch 3 wolf moon tempor, sunt aliqua put a bird on it squid single-origin coffee nulla assumenda shoreditch et. Nihil anim keffiyeh helvetica, craft beer labore wes anderson cred nesciunt sapiente ea proident. Ad vegan excepteur butcher vice lomo. Leggings occaecat craft beer farm-to-table, raw denim aesthetic synth nesciunt you probably haven't heard of them accusamus labore sustainable VHS.

{% endcapture %}
{% include example.html content=example %}

Accessibility

Be sure to add aria-expanded to the control element. This attribute explicitly conveys the current state of the collapsible element tied to the control to screen readers and similar assistive technologies. If the collapsible element is closed by default, the attribute on the control element should have a value of aria-expanded="false". If you've set the collapsible element to be open by default using the show class, set aria-expanded="true" on the control instead. The plugin will automatically toggle this attribute on the control based on whether or not the collapsible element has been opened or closed (via JavaScript, or because the user triggered another control element also tied to the same collapsbile element). If the control element's HTML element is not a button (e.g., an <a> or <div>), the attribute role="button" should be added to the element.

If your control element is targeting a single collapsible element – i.e. the data-target attribute is pointing to an id selector – you should add the aria-controls attribute to the control element, containing the id of the collapsible element. Modern screen readers and similar assistive technologies make use of this attribute to provide users with additional shortcuts to navigate directly to the collapsible element itself.

Note that Bootstrap's current implementation does not cover the various keyboard interactions described in the WAI-ARIA Authoring Practices 1.1 accordion pattern [https://www.w3.org/TR/wai-aria-practices-1.1/#accordion] - you will need to include these yourself with custom JavaScript.

Usage

The collapse plugin utilizes a few classes to handle the heavy lifting:

	.collapse hides the content

	.collapse.show shows the content

	.collapsing is added when the transition starts, and removed when it finishes

These classes can be found in _transitions.scss.

Via data attributes

Just add data-toggle="collapse" and a data-target to the element to automatically assign control of one or more collapsible elements. The data-target attribute accepts a CSS selector to apply the collapse to. Be sure to add the class collapse to the collapsible element. If you'd like it to default open, add the additional class show.

To add accordion-like group management to a collapsible area, add the data attribute data-parent="#selector". Refer to the demo to see this in action.

Via JavaScript

Enable manually with:

{% highlight js %}
$('.collapse').collapse()
{% endhighlight %}

Options

Options can be passed via data attributes or JavaScript. For data attributes, append the option name to data-, as in data-parent="".

 	Name
 	Type
 	Default
 	Description

 	parent
 	selector | jQuery object | DOM element
 	false
 	If parent is provided, then all collapsible elements under the specified parent will be closed when this collapsible item is shown. (similar to traditional accordion behavior - this is dependent on the card class). The attribute has to be set on the target collapsible area.

 	toggle
 	boolean
 	true
 	Toggles the collapsible element on invocation

Methods

{% include callout-danger-async-methods.md %}

.collapse(options)

Activates your content as a collapsible element. Accepts an optional options object.

{% highlight js %}
$('#myCollapsible').collapse({
toggle: false
})
{% endhighlight %}

.collapse('toggle')

Toggles a collapsible element to shown or hidden. Returns to the caller before the collapsible element has actually been shown or hidden (i.e. before the shown.bs.collapse or hidden.bs.collapse event occurs).

.collapse('show')

Shows a collapsible element. Returns to the caller before the collapsible element has actually been shown (i.e. before the shown.bs.collapse event occurs).

.collapse('hide')

Hides a collapsible element. Returns to the caller before the collapsible element has actually been hidden (i.e. before the hidden.bs.collapse event occurs).

.collapse('dispose')

Destroys an element's collapse.

Events

Bootstrap's collapse class exposes a few events for hooking into collapse functionality.

 	Event Type
 	Description

 	show.bs.collapse
 	This event fires immediately when the show instance method is called.

 	shown.bs.collapse
 	This event is fired when a collapse element has been made visible to the user (will wait for CSS transitions to complete).

 	hide.bs.collapse
 	This event is fired immediately when the hide method has been called.

 	hidden.bs.collapse
 	This event is fired when a collapse element has been hidden from the user (will wait for CSS transitions to complete).

{% highlight js %}
$('#myCollapsible').on('hidden.bs.collapse', function () {
// do something...
})
{% endhighlight %}

 layout: docs title: Dropdowns description: Toggle contextual overlays for displaying lists of links and more with the Bootstrap dropdown plugin. group: components toc: true

layout: docs
title: Dropdowns
description: Toggle contextual overlays for displaying lists of links and more with the Bootstrap dropdown plugin.
group: components
toc: true

Overview

Dropdowns are toggleable, contextual overlays for displaying lists of links and more. They're made interactive with the included Bootstrap dropdown JavaScript plugin. They're toggled by clicking, not by hovering; this is an intentional design decision [http://markdotto.com/2012/02/27/bootstrap-explained-dropdowns/].

Dropdowns are built on a third party library, Popper.js [https://popper.js.org/], which provides dynamic positioning and viewport detection. Be sure to include [popper.min.js]({{ site.cdn.popper }}) before Bootstrap's JavaScript or use bootstrap.bundle.min.js / bootstrap.bundle.js which contains Popper.js. Popper.js isn't used to position dropdowns in navbars though as dynamic positioning isn't required.

If you're building our JavaScript from source, it [requires util.js]({{ site.baseurl }}/docs/{{ site.docs_version }}/getting-started/javascript/#util).

Accessibility

The WAI ARIA [https://www.w3.org/TR/wai-aria/] standard defines an actual role="menu" widget [https://www.w3.org/WAI/PF/aria/roles#menu], but this is specific to application-like menus which trigger actions or functions. ARIA menus can only contain menu items, checkbox menu items, radio button menu items, radio button groups, and sub-menus.

Bootstrap's dropdowns, on the other hand, are designed to be generic and applicable to a variety of situations and markup structures. For instance, it is possible to create dropdowns that contain additional inputs and form controls, such as search fields or login forms. For this reason, Bootstrap does not expect (nor automatically add) any of the role and aria- attributes required for true ARIA menus. Authors will have to include these more specific attributes themselves.

However, Bootstrap does add built-in support for most standard keyboard menu interactions, such as the ability to move through individual .dropdown-item elements using the cursor keys and close the menu with the ESC key.

Examples

Wrap the dropdown's toggle (your button or link) and the dropdown menu within .dropdown, or another element that declares position: relative;. Dropdowns can be triggered from <a> or <button> elements to better fit your potential needs.

Single button

Any single .btn can be turned into a dropdown toggle with some markup changes. Here's how you can put them to work with either <button> elements:

{% capture example %}

 Dropdown button

 Action
 Another action
 Something else here

{% endcapture %}
{% include example.html content=example %}And with <a> elements:

{% capture example %}

 Dropdown link

 Action
 Another action
 Something else here

{% endcapture %}
{% include example.html content=example %}The best part is you can do this with any button variant, too:

 Primary

 Action
 Another action
 Something else here

 Separated link

 Secondary

 Action
 Another action
 Something else here

 Separated link

 Success

 Action
 Another action
 Something else here

 Separated link

 Info

 Action
 Another action
 Something else here

 Separated link

 Warning

 Action
 Another action
 Something else here

 Separated link

 Danger

 Action
 Another action
 Something else here

 Separated link

{% highlight html %}

 Action

 Action
 Another action
 Something else here

 Separated link

{% endhighlight %}

Split button

Similarly, create split button dropdowns with virtually the same markup as single button dropdowns, but with the addition of .dropdown-toggle-split for proper spacing around the dropdown caret.

We use this extra class to reduce the horizontal padding on either side of the caret by 25% and remove the margin-left that's added for regular button dropdowns. Those extra changes keep the caret centered in the split button and provide a more appropriately sized hit area next to the main button.

 Primary

 Toggle Dropdown

 Action
 Another action
 Something else here

 Separated link

 Secondary

 Toggle Dropdown

 Action
 Another action
 Something else here

 Separated link

 Success

 Toggle Dropdown

 Action
 Another action
 Something else here

 Separated link

 Info

 Toggle Dropdown

 Action
 Another action
 Something else here

 Separated link

 Warning

 Toggle Dropdown

 Action
 Another action
 Something else here

 Separated link

 Danger

 Toggle Dropdown

 Action
 Another action
 Something else here

 Separated link

{% highlight html %}

 Action

 Toggle Dropdown

 Action
 Another action
 Something else here

 Separated link

{% endhighlight %}

Sizing

Button dropdowns work with buttons of all sizes, including default and split dropdown buttons.

 Large button

 Action
 Another action
 Something else here

 Separated link

 Large split button

 Toggle Dropdown

 Action
 Another action
 Something else here

 Separated link

 Small button

 Action
 Another action
 Something else here

 Separated link

 Small split button

 Toggle Dropdown

 Action
 Another action
 Something else here

 Separated link

{% highlight html %}

 Large button

 ...

 Large split button

 Toggle Dropdown

 ...

 Small button

 ...

 Small split button

 Toggle Dropdown

 ...

{% endhighlight %}

Directions

Dropup

Trigger dropdown menus above elements by adding .dropup to the parent element.

 Dropup

 Action
 Another action
 Something else here

 Separated link

 Split dropup

 Toggle Dropdown

 Action
 Another action
 Something else here

 Separated link

{% highlight html %}

 Dropup

 Split dropup

 Toggle Dropdown

{% endhighlight %}

Dropright

Trigger dropdown menus at the right of the elements by adding .dropright to the parent element.

 Dropright

 Action
 Another action
 Something else here

 Separated link

 Split dropright

 Toggle Dropright

 Action
 Another action
 Something else here

 Separated link

{% highlight html %}

 Dropright

 Split dropright

 Toggle Dropright

{% endhighlight %}

Dropleft

Trigger dropdown menus at the left of the elements by adding .dropleft to the parent element.

 Dropleft

 Action
 Another action
 Something else here

 Separated link

 Toggle Dropleft

 Action
 Another action
 Something else here

 Separated link

 Split dropleft

{% highlight html %}

 Dropleft

 Toggle Dropleft

 Split dropleft

{% endhighlight %}

Menu items

Historically dropdown menu contents had to be links, but that's no longer the case with v4. Now you can optionally use <button> elements in your dropdowns instead of just <a>s.

{% capture example %}

 Dropdown

 Action
 Another action
 Something else here

{% endcapture %}
{% include example.html content=example %}You can also create non-interactive dropdown items with .dropdown-item-text. Feel free to style further with custom CSS or text utilities.

{% capture example %}

 Dropdown item text
 Action
 Another action
 Something else here

{% endcapture %}
{% include example.html content=example %}
Active

Add .active to items in the dropdown to style them as active.

{% capture example %}

 Regular link
 Active link
 Another link

{% endcapture %}
{% include example.html content=example %}

Disabled

Add .disabled to items in the dropdown to style them as disabled.

{% capture example %}

 Regular link
 Disabled link
 Another link

{% endcapture %}
{% include example.html content=example %}

Menu alignment

By default, a dropdown menu is automatically positioned 100% from the top and along the left side of its parent. Add .dropdown-menu-right to a .dropdown-menu to right align the dropdown menu.

{% capture callout %}
Heads up! Dropdowns are positioned thanks to Popper.js (except when they are contained in a navbar).
{% endcapture %}
{% include callout.html content=callout type="info" %}

{% capture example %}

 Right-aligned menu

 Action
 Another action
 Something else here

{% endcapture %}
{% include example.html content=example %}
Responsive alignment

If you want to use responsive alignment, disable dynamic positioning by adding the data-display="static" attribute and use the responsive variation classes.

To align right the dropdown menu with the given breakpoint or larger, add .dropdown-menu{-sm|-md|-lg|-xl}-right.

{% capture example %}

 Left-aligned but right aligned when large screen

 Action
 Another action
 Something else here

{% endcapture %}
{% include example.html content=example %}To align left the dropdown menu with the given breakpoint or larger, add .dropdown-menu-right and .dropdown-menu{-sm|-md|-lg|-xl}-left.

{% capture example %}

 Right-aligned but left aligned when large screen

 Action
 Another action
 Something else here

{% endcapture %}
{% include example.html content=example %}Note that you don't need to add a data-display="static" attribute to dropdown buttons in navbars, since Popper.js isn't used in navbars.

Menu content

Headers

Add a header to label sections of actions in any dropdown menu.

{% capture example %}

 Dropdown header

 Action
 Another action

{% endcapture %}
{% include example.html content=example %}

Dividers

Separate groups of related menu items with a divider.

{% capture example %}

 Action
 Another action
 Something else here

 Separated link

{% endcapture %}
{% include example.html content=example %}

Text

Place any freeform text within a dropdown menu with text and use [spacing utilities]({{ site.baseurl }}/docs/{{ site.docs_version }}/utilities/spacing/). Note that you'll likely need additional sizing styles to constrain the menu width.

{% capture example %}

 Some example text that's free-flowing within the dropdown menu.

 And this is more example text.

{% endcapture %}
{% include example.html content=example %}

Forms

Put a form within a dropdown menu, or make it into a dropdown menu, and use [margin or padding utilities]({{ site.baseurl }}/docs/{{ site.docs_version }}/utilities/spacing/) to give it the negative space you require.

{% capture example %}

 Email address

 layout: docs title: Forms description: Examples and usage guidelines for form control styles, layout options, and custom components for creating a wide variety of forms. group: components toc: true

layout: docs
title: Forms
description: Examples and usage guidelines for form control styles, layout options, and custom components for creating a wide variety of forms.
group: components
toc: true

Overview

Bootstrap's form controls expand on [our Rebooted form styles]({{ site.baseurl }}/docs/{{ site.docs_version }}/conten